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Introduction
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Survival analysis

Time-to-event or survival time (Y )

Time

Begin Event

I Interest on survival function S(t) = 1− F (t) = P(Y > t)

I Common challenge in practice is that an event is not always
observed (censored observations).

Only a lower bound of the survival time is known (right censoring)

I Observed time T = min(Y ,C ).

I Event indicator δ = 1(Y ≤ C ).

2/32EM algorithm based estimator for the latency



Standard survival models vs. cure models

I Standard survival models suppose that all subjects are assumed
to eventually experience the event (Y <∞).

I Cure models assume that there is a proportion of subjects who
will never experience the event and thus the survival curve reaches
a plateau P(Y =∞) > 0.
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P(Y =∞) = lim
t→∞

S(t) = 0. P(Y =∞) = lim
t→∞

S(t) > 0.

3/32EM algorithm based estimator for the latency



Standard cure models

Time

Begin End of study

Uncensored
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Y =∞
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Standard cure models
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Notation

I Let Y be the time to event of interest, possibly censored at the
censoring time C . With a cure fraction, the observations are
(X,T , δ):

X is a covariate vector.
T = min(Y ,C ) is the observed time.
δ = 1(Y ≤ C ) is the event indicator.

I Let U = 1(Y <∞) be the uncure indicator (latent variable).

Uncensored (Xi,Ti = Yi , δi = 1) Ui = 1
Censored (Xi,Ti = Ci , δi = 0) Ui =??

Censoring hinders from classifying the censored observations to be
classified as cured or uncured (U is not available for censored
observations!).
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(Cure status is partially known)

There might be situations where some censored observations are identified to be cured.

Time

Begin End of study

Uncensored
1. 5

Censored
2. m Y =∞

Censored
3. m 5

Censored
4. m

Y =∞

Cure threshold: Laska and Meisner (1992), Tan (2006), Nieto-Barajas and
Yin (2008), Bernhardt (2016)
Based on a diagnostic test: Wu (2010)

Randomly: Betensky and Schoenfeld (2001), Safari et al (2021)

6/32EM algorithm based estimator for the latency



Mixture Cure Models (MCM)

I Boag (1949) introduced MCM where he defined that the survival function of
the population of individuals was presented as a mixture:

1 − p(x)

Population

p(x)

cured

uncured

Y = ∞

Y ∼ Su(t | x)

S(t|x) = 1− p(x)︸ ︷︷ ︸
Cure probability

+ p(x)Su(t|x)︸ ︷︷ ︸
Latency

I The probability of cure: 1− p(x) = P(U = 0 | X = x).

I The latency: Su(t|x) = P(Y > t | X = x,U = 1).
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Nonparametric estimation of the latency
survival function
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Nonparametric estimation in usual MCM

Nonparametric estimators for the cure rate (Xu and Peng, 2014; López-Cheda et
al, 2017a; 2020) and for the latency (López-Cheda et al, 2017b) are based on the
relations

1− p(x) = limt→∞ S(t|x) and Su(t|x) =
S(t|x)− (1− p(x))

p(x)

estimating S(t|x) with the generalized product-limit estimator (Beran, 1981):

Ŝh(t|x) =

n∏
i=1

(
1−

δ[i ]B[i ],h(x)1(T(i) ≤ t)∑n

j=i
B[j],h(x)

)
,

where B[i ],h(x) are the Nadaraya-Watson weights

B[i ],h (x) =
Kh

(
x − X[i ]

)∑n

j=1
Kh (x − Xj)

and Kh(·) = K(·/h)/h is a kernel function and h a smoothing parameter.
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Usual nonparametric estimation in MCM

In the usual MCM, the NP estimator of the latency function (López-Cheda et al,
2017b) is

S̃u,h(t|x) =
Ŝh(t|x)− (1− p̂h(x))

p̂h(x)

It will be referred as NPSXX estimator.

What if the covariates in the cure rate and the latency are different?

S(t|x, z) = 1− p(z) + p(z)Su(t|x).

The equivalent idea for a latency estimator

Ŝh(t|x , z)− (1− p̂h(z))

p̂h(z)

is a function depending on both x and z ⇒ It can not be considered an estimator of

Su(t|x) in this model
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Proposed estimator (NPSXZ)

We propose the following nonparametric product-limit estimator:

Ŝu,h(t|x) =
∏
ti≤t

(
1− δiBi ,h(x)∑n

j=1 wj Bj ,h(x)

)
,

where {w1, . . . ,wn} is a vector of weights representing the conditional

probability of being uncured E (ui |ti , δi , xi , zi ) , and ui is the value of

U for subject i . To estimate the weights, {w1, . . . ,wn}, we consider
the EM algorithm.
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EM algorithm

E-step: We compute the conditional expectation of ln(p(·), S0(·)) with respect
to ui , which is equivalent to computing the conditional expectation of ui :

E [ui |ti , δi , xi , zi , p(r−1)(·),S (r−1)
u (·)]

= δi + (1− δi )
p̂(r−1)(zi )Ŝ

(r−1)
u (ti |xi )

1− p̂(r−1)(zi ) + p̂(r−1)(zi )Ŝ
(r−1)
u (ti |xi )

,

where p̂(r−1)(·), Ŝ
(r−1)
u (·) are the estimates of p(·), Su(·) respectively in the

last iteration of the EM algorithm.

M-step: We maximize l1n(p(·)) and l2n(Su(·)) after ui is replaced with

E [ui |ti , δi , xi , zi , p(r−1)(·), S (r−1)
u (·)] to update p(·) and Su(·).
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Implementation

1 Compute p̂h1,i (zi ) and S̃u,h2,i (ti |xi ), the NP estimators in the MCM with one
single covariate, using the R package npcure (López-de-Ullibarri et al, 2020).

2 Set r = 1 and denote Ŝ
(0)
u,h2,i

(ti |xi ) = S̃u,h2,i (ti |xi )

3 E-step: for r > 1 compute

w
(r)
i = δi + (1− δi )

p̂h1,i (zi )Ŝ
(r−1)
u,h2,i

(ti |xi )

1− p̂h1,i (zi ) + p̂h1,i (zi )Ŝ
(r−1)
u,h2,i

(ti |xi )
, i = 1, . . . , n.

4 M-step: update Ŝ
(r)
u (·) from:

Ŝ
(r)
u,h2,i

(ti |xi ) =
∏
tk≤ti

1−
δkBk,h2,i (xi )

n∑
j=i

w
(r)
j Bj,h2,i (xi )

 .

5 Repeat Step 3 and 4 until convergence.
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Alternative estimator (NPSXZ2)

The estimation of Su(t|x) can have a simplified version:

S̃u,h(t|x) =
∏
ti≤t

1− δiBi ,h(x)∑n
j=1 w̃j Bj ,h(x)

 ,
where w̃j are estimated with the EM algorithm considering:

1− p̂n = Ŝn(tn),

where Ŝn(tn) is the Kaplan-Meier estimator of the survival function
S(t) evaluated at the largest observed time tn.

Advantage: No bandwidth needed when computing p̂n.

Disadvantage: less efficient than the NPSXZ method since the NPSXZ
estimator takes into account the dependency of the cure rate 1− p(z) on the
covariate Z .
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Bandwidth selection
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Bootstrap bandwidth selection method

For a given x , the optimal local MISE bandwidth h(x) for the
estimator Ŝu,h(t|x) is approximated by the minimizer of the bootstrap
version of the MISE:

MISE∗
x(h) ' 1

B

B∑
b=1

∫ (
Ŝ

∗(b)
u,h(x)(t|x)− Ŝu,g(x)(t|x)

)2
w(t, x)dt,

Ŝ
∗(b)

u,h(x)(t|x) is the proposed estimator of Su(t|x) computed with bandwidth

h(x) and based on the b-th bootstrap sample

Ŝu,g(x)(t|x) is the proposed estimator computed using a pilot bandwidth g(x)
and based on the original sample

w(t, x) is an appropriate weight function intended to give lower weight at the
right tail of the distribution

B is the number of bootstrap samples.
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Bootstrapping in the MCM S(t|x) = 1− p(x) + Su(t|x)

Obvious bootstrap
For each i , generate X ∗i iid from the empirical distribution of (X1, . . . ,Xn), generate
Y ∗i from the GPL estimator of the survival funtion Ŝg (t|X ∗i ), generate C∗i from the
GPL estimator of the censoring distribution Ĝg (t|X ∗i ), and compute:

T ∗i = min(Y ∗i ,C
∗
i ) and δ∗i = 1(Y ∗i ≤ C∗i )

Simple weighted bootstrap

For each i , generate X ∗i iid from the empirical distribution of (Xi , . . . ,Xn), and
generate (T ∗i , δ

∗
i ) from the weighted empirical distribution

F̂g (t, d |X ∗i ) =

n∑
j=1

Bg,j(X
∗
i )1(Tj ≤ t, δj ≤ d)

.

Without ties in the observed times, both methods are equivalent (Li and Datta,

2001; Safari et al, 2022)
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Bootstrapping in the MCM S(t|x , z) = 1− p(z) + Su(t|x)

Obvious bootstrap
For each i , generate (X ∗i ,Z

∗
i ) iid from the empirical distribution of

{(X1,Z1), . . . , (Xn,Zn)}, generate Y ∗i from an estimator of the survival funtion
Ŝg (t|X ∗i ,Z∗i ), generate C∗i from an estimator of the censoring distribution
Ĝg (t|X ∗i ,Z∗i ), and compute:

T ∗i = min(Y ∗i ,C
∗
i ) and δ∗i = 1(Y ∗i ≤ C∗i )

Simple weighted bootstrap

For each i , generate X ∗i iid from the empirical distribution of (Xi , . . . ,Xn), and
generate (T ∗i , δ

∗
i ) from the distribution

Ŝg (t|X ∗i ,Z∗i )(1− Ĝg (t|X ∗i ,Z∗i ))

.

Bootstrapping under this MCM model with the simple weighted resampling method
becomes more complicated, given the dependency of 1− p(z) and the latency
Su(t|x) on different covariates. As a consequence, the obvious bootstrap is
considered instead.
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Simulation study
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Simulation study

Aim: To assess the finite sample performance of the proposed NPSXZ
and NPSXZ2 estimators when the cure rate and the latency depend on
different covariates.

Two existing methods are considered for reference:

The semiparametric method by Peng and Dear (2000):

Implemented in the smcure package (Cai et al, 2012). It fits the
cure rate 1− p(z), with a logistic link function, and the latency
Su(t|x), with a PH model.

The NPSXX estimator by López-Cheda et al (2017a,b):

Implemented in the npcure package (López-Cheda et al, 2021).
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Data generation

The covariates X and Z are generated independently from a
U(−10, 20)

The censoring times, C , are generated from an Exp(0.3)

The failure times, Y , are generated under three settings.
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1 Setting 1 Censoring rate 60.99%; overall cure rate 29.07%:

p(z) =
exp(β0 + β1z)

1 + exp(β0 + β1z)

Su(t|x) =


exp(−λ(x)t)− exp(−λ(x)τ0)

1− exp(−λ(x)τ0)
if t ≤ τ0

0 if t > τ0

,

with β0 = 0.476, β1 = 0.358, τ0 = 4.605, and
λ (x) = exp ((x + 20)/40).

2 Setting 2 Censoring rate 47.30%; overall cure rate 41.07%:

p(z) =
exp

(
β0 + β1z + β2z

2 + β3z
3
)

1 + exp (β0 + β1z + β2z2 + β3z3)

Su(t|x) =
1

2

{
exp[−α(x)t5] + exp(−100t5)

}
,

where β0 = 0.0476, β1 = −0.2558, β2 = −0.0027, β3 = 0.004, and
α(x) = exp(−0.01x2).

3 Setting 3: same forms as in Setting 1 except that both p(x) and
Su(t|x) depend on the same covariate X .
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n = 50, 100, and 200

N = 1000 samples

The MISEs of each estimator of the latency function with Monte
Carlo are approximated as follows:

MISE(x) ≡ 1

N

N∑
j=1

∫ (
Ŝ (j)
u (t|x)− Su(t|x)

)2
w(t, x)dt,

Ŝ
(j)
u (t|x) is the estimated latency survival function from sample j

computed with each of the aforementioned method
w(t, x) = 1(ax ≤ t ≤ bx) is the weight function, where ax = 0 and
bx is the 90th pertentile of Su(t|x).
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MISE in Setting 1 S(t|x , z) = 1− p(z) + Su(t|x)
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Figure 1: MISEs of the NPSXZ estimator (solid line), the NPSXZ2 estimator

(dot-dashed line), the NPSXX estimator (dotted line), and the semiparametric

estimator (dashed line) with sample sizes n = 50 (left), n = 100 (center) and

n = 200 (right), for Setting 1.
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MISE in Setting 2 S(t|x , z) = 1− p(z) + Su(t|x)
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Figure 2: MISEs of the NPSXZ estimator (solid line), the NPSXZ2 estimator

(dot-dashed line), the NPSXX estimator (dotted line), and the semiparametric

estimator (dashed line) with sample sizes n = 50 (left), n = 100 (center) and

n = 200 (right), for Setting 2.
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MISE in Setting 3 S(t|x) = 1− p(x) + Su(t|x)
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Figure 3: MISEs of the NPSXZ estimator (solid line), the NPSXZ2 estimator

(dot-dashed line), the NPSXX estimator (dotted line), and the semiparametric

estimator (dashed line) with sample sizes n = 50 (left), n = 100 (center) and

n = 200 (right), for Setting 3.
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Robustness of the NPSXZ estimator to the choice
of the bandwidth
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Figure 4: MISEs vs h for the NPSXZ estimator, with sample size n = 100, for

Setting 1 (left) and Setting 2 (center) and Setting 3 (right), for covariate values

x = −5 (solid line), x = 0 (dashed line), x = 5 (dotted line), x = 10 (dot-dashed

line) and x = 15 (long dashed line).
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An application to time to bankruptcy
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Real data set: banks (time to bankrupcy)

500 commercial banks insured by the Federal Deposit Insurance
Corporation (FDIC), studied by Beretta and Heuchenne (2019)
Event of interest: bankruptcy or bank’s closure by the FDIC.

5.6% banks experienced the event of interest (bankruptcy)

Follow-up time: period 2006 - 2017
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Figure 5: KM estimation of the survival time until bankrupcy of the commercial banks
dataset.
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Objectives

To estimate the probability of not becoming bankrupt (cure rate)

To estimate the distribution of the time to bankruptcy for the
banks that will be bankrupt (latency)

We consider a set of bank-specific explanatory variables related to
some of the 5 components of the well-known CAMEL rating system:
capital adequacy, asset quality, management efficiency, earnings, and
liquidity.
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Covariates

COREDEP (Z): Retail deposits, the most stable source of funding for
lending activities.
Prob. bankruptcy Decreases significantly for large values of COREDEP

(pBH < 0.001, pKS < 0.001, pCvM < 0.001)
Latency Not affected significantly (pBH = 0.2638).

LOANS (X ): Total loans, measures the asset quality and it is usually
the least liquid and most risky asset.
Prob. bankruptcy Not affected significantly (pBH = 0.8294, pKS = 0.1771

pCvM = 0.1006)

Latency High values of LOANS are associated to longer times to

bankruptcy (pBH = 0.0063).

ROA (X ,Z): Return on assets, the capability of a bank to generate
earnings. Large values of ROA are associated with stronger and safer
banks.
Prob. bankruptcy Affected significantly (pBH < 0.001, pKS < 0.001,

pCvM < 0.001)

Latency Affected significantly (pBH = 0.0154).
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Probability of cure 1− p(x) (not bankrupt)
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Figure 6: NP estimation of the probability of immune to bankruptcy (solid black line) as a
function of COREDEP (left), LOANS (center) and ROA (right). The 95% confidence
intervals (dashed black lines) are computed using the percentile bootstrap method. The
blue line represents the Parzen–Rosenblatt density estimations of the covariates, using
Sheather and Jones’ plug-in bandwidth.

The probability of being immune to bankruptcy:

increases as COREDEP or ROA increases

does not appear to depend on LOANS

28/32EM algorithm based estimator for the latency



Estimation of Su(t|x)
with X = LOANS and Z = COREDEP for 1− p(z)
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Figure 7: Estimation of the latency with the NPSXZ estimator (solid line), the

NPSXZ2 estimator (dot-dashed line), the semiparametric estimator (dashed line),

and the NPSXX estimator (dotted line) when LOANS = 0.5546 (left) and LOANS

= 0.7453 (right).
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Estimation of Su(t|x)
with X = ROA and Z = ROA for 1− p(z)
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Figure 8: Estimation of the latency with the NPSXZ estimator (solid line), the

NPSXZ2 estimator (dot-dashed line), the semiparametric estimator (dashed line),

and the NPSXX estimator (dotted line) when ROA = 0.0042 (left) and 0.0125

(right).
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Conclusions

Two nonparametric estimators for the latency distribution,
NPSXZ and NPSXZ2, were introduced in the MCM:

They do not require the covariates in the cure rate and latency
parts to be the same
They do not involve any parametric assumptions
They can be applied to discrete and categorical covariates
They hinge on a suitable choice of the smoothing parameter or
bandwidth → bootstrap bandwidth selector

Simulation study: the proposed estimators perform better than
the existing estimators when the assumptions for the existing
estimators are not fulfilled, while they still maintain their strong
performance when the assumptions for the existing estimators are
fulfilled

Real data: differences in the latency survival estimates from the
proposed estimators and the existing ones → the assumptions of
the existing methods may not hold
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Future work

Asymptotic properties for the proposed estimators.

Multi-dimensional covariates:

Using multivariate weight functions Bi,h(x) in Rp, for example, the
NW weights with a multivariate product kernel
K(u) =

∏p
l=1 Kl(ul)

Using single index-models.

Generalization to left censoring, interval censoring, truncation,
time-dependent covariates and dependent censoring
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[5] López-Cheda, A., Jácome, M. A. and Cao, R. (2017b). Nonparametric latency
estimation for mixture cure models. TEST, 26, 353—376.
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